

ECE 344

MICROWAVE FUNDAMENTALS PART1-Lecture 5

Dr. Gehan Sami

Many Slides from: ECE 5317_6351 Microwave Engineering Prof. David R. Jackson

Example 1 USE ADS to:

- -draw magnitude voltage across the line $\beta l=2\pi$ or $\ell=\lambda$
- -draw magnitude current across the line
- -draw impedance across the line

observe mag(V),mag(I),Z every $\ell = \lambda/2$

- -Compute magnitude of voltage, current at load.
- -verify input impedance at load from voltage/current Equals load impedance.
- -find max voltage value and its position
- -find min voltage value and its position

Terminated transmission line repeats its voltage mag., current mag. and impedance each $\lambda/2$

$$V(Q+\frac{\lambda}{2}) = -V(l)$$

$$I(l+\frac{\lambda}{2}) = -I(l)$$

$$V(l+\frac{\lambda}{2}) = V(l)$$

$$I(l+\frac{\lambda}{2}) = I(l)$$

$$V(l+\frac{\lambda}{2}) = I(l)$$

for
$$\beta l = 60^{\circ}$$
 $L^{+} = 5$ $\mathcal{L} = 0.678 \angle 85.43$

Find $V(\beta l = 60)$, $\mathcal{L}(\beta l = 60)$, $\mathcal{L}(\beta l = 60)$

Soln $V = V_{5}^{+} e^{j\beta l} (1 + \mathcal{L}_{1}^{-} e^{2j\beta l})$
 $= 5 \angle 60 (1 + 0.678 \angle 85.43 \angle -120)$
 $= 5.56 + j5.79 = 8 \angle 46.13^{\circ}$ $V_{0} + i = 5.56 + j = 5.60$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - \mathcal{L}_{1}^{-} e^{2j\beta l})$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - \mathcal{L}_{1}^{-} e^{2j\beta l})$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - 0.678 \angle 85.43 \angle -120)$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - 0.678 \angle 85.43 \angle -120)$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - 0.678 \angle 85.43 \angle -120)$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - 0.678 \angle 85.43 \angle -120)$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - 0.678 \angle 85.43 \angle -120)$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - 0.678 \angle 85.43 \angle -120)$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - 0.678 \angle 85.43 \angle -120)$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - 0.678 \angle 85.43 \angle -120)$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - 0.678 \angle 85.43 \angle -120)$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - 0.678 \angle 85.43 \angle -120)$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - 0.678 \angle 85.43 \angle -120)$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - 0.678 \angle 85.43 \angle -120)$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - 0.678 \angle 85.43 \angle -120)$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - 0.678 \angle 85.43 \angle -120)$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - 0.678 \angle 85.43 \angle -120)$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - 0.678 \angle 85.43 \angle -120)$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - 0.678 \angle 85.43 \angle -120)$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - 0.678 \angle 85.43 \angle -120)$
 $V_{0}^{+} = \frac{1}{2} e^{i\beta l} (1 - 0.678 \angle 85.43 \angle -120)$

at $\ell = \frac{2}{2} \frac{13\ell}{180} = \frac{180}{180}$ magnitude of Voltage Repeats every $\ell = \frac{\lambda}{2} = \frac{132.7^{\circ}}{180} = \frac{11+15.16}{180} = \frac{1$

Example 2

A 2cm lossless TL has V_g =10 volt, Z_g =60 Ω , Z_L =100+j80 Ω and Z_o =40 Ω , λ =10cm Find the input impedance Z_{in} and V_{in}

$$Z_{\text{in}} = Z_0 \frac{Z_L + jZ_0 \tan \beta l}{Z_0 + jZ_L \tan \beta l} \rightarrow Z_{\text{in}} = 12.2 - j21.175$$

$$V_{in} = V_g \frac{Z_{in}}{Z_{in} + Z_g} \rightarrow V_{in} = 2.35 - j2.24$$

-compute incident voltage at load. (Ans: 3.75 ∟ -77.75)

Example 2 with ADS

freq	Zin1	Vin
3.000 GHz	12.208 - j21.177	2.349 - j2.244

Matched Load

(A) Matched load: $(Z_L = Z_0)$

$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0} = 0$$

No reflection from the load

$$\Rightarrow V\left(-\ell\right) = V_0^+ e^{+j\beta\ell}$$

$$I\left(-\ell\right) = \frac{V_0^+}{Z_0} e^{+j\beta\ell} \qquad \Rightarrow Z\left(-\ell\right) = Z_0$$
For any ℓ

Short-Circuit Load

(B) Short circuit load: $(Z_L = 0)$

$$\Gamma_{L} = \frac{0 - Z_{0}}{0 + Z_{0}} = -1$$

$$\Rightarrow Z(-\ell) = jZ_{0} \tan(\beta \ell)$$

Note: $\beta \ell = 2\pi \frac{\ell}{\lambda_g}$

Always imaginary!

$$\Rightarrow Z(-\ell) = jX_{sc}$$

$$X_{sc} = Z_0 \tan(\beta \ell)$$

S.C. can become an O.C. with a $\lambda_g/4$ trans. line

Open-Circuit Load ($Z_L = \infty$)

© Open circuit load: $(ZL = \infty)$

$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0}$$

$$\Gamma_L = \frac{\infty - Z_0}{\infty + Z_0}$$

$$\Gamma_L = +1$$

$$Z(-d) = Z_0 \left(\frac{Z_L + jZ_0 \tan(\beta d)}{Z_0 + jZ_L \tan(\beta d)} \right) \quad \text{or} \quad Z(-d) = Z_0 \left(\frac{1 + j(Z_0 / Z_L) \tan(\beta d)}{(Z_0 / Z_L) + j \tan(\beta d)} \right)$$

$$Z(-d) = -jZ_0 \cot(\beta d)$$

Always imaginary!

Open-Circuit Load $(Z_L = \infty)$

$$Z(-d) = -jZ_0 \cot(\beta d)$$

$$Z(-d) = jX_{oc}$$

$$X_{oc} = -Z_0 \cot(\beta d)$$

O.C. can become a S.C. with a $\lambda_g/4$ transmission line.

openTLequivC

Example 3 Open end and short end TL equivalent elements

freq	Zin 1	Z in2
1.000 GHz	50.002 / -90.000	50.000 / .90.000

openTLequivC

shortTLequivL

freq	Zin1	Zin2
1.000 GHz	50.014 / 90.000	50.000 / 90.000

Input impedance for a T.L. of length $l=\lambda/2$

$$Z_{in} = Z_0 \frac{Z_L + jZ_0 \tan \beta l}{Z_0 + jZ_L \tan \beta l}$$

at
$$l = \lambda/2 \implies \tan \beta l = 0 \rightarrow Z_{in} = Z_{I}$$

So any line(no matter its characteristic impedance) of length $\lambda/2$ or multiple of $\lambda/2$, will look to (or have Z_{in}) Z_L directly; (as if T.L. does not exist, i.e. T.L. does not transform Z_L at its input)

Input impedance for a T.L. of length l=λ/4 (quarter wave transformer)

$$Z_{in} = Z_1 \frac{Z_L \cos \beta l + j Z_1 \sin \beta l}{Z_1 \cos \beta l + j Z_L \sin \beta l},$$

$$Z_0, \beta$$
 Z_1, β R_L

$$\ell = \lambda/4$$

match pure resistive load impedance

at
$$l = \lambda / 4$$
, $\beta l = \pi / 2 \rightarrow Z_{in} = \frac{Z_1^2}{Z_1} = Z_0$

$$Z_1 = \sqrt{Z_L Z_0}$$
 so input impedance at input of transformer look as Z_0

Example 4

Given a 50 Ω transmission line that is 0.25 λ long excited by a 1 V voltage source at 300 MHz frequency with an internal impedance of 100 Ω , and the line is terminated by a load $Z_L = 100 - j40 \Omega$, determine $\Gamma_L, Z_{in}, V_{in}, V_{in}^+$

$$\Gamma_L = \frac{Z_L - Z_o}{Z_L + Z_o} = 0.378 - j0.166$$
 $Z_{in} = Z_o * Z_o / Z_L = 21.55 + j8.62$
 $V_{in} = V_{TH} \frac{Z_{in}}{Z_{in} + Z_{TH}} = 0.1814 + j0.058$

$$V_o^+ = \frac{V_{in}}{e^{j\beta l}(1 + \Gamma_L e^{-2j\beta l})} = 0.0144 - j0.295$$

Verify by ADS

freq S(1,1) S(2,2) Zin1 Zin2	vin
300.0 MHz 0.378 - j0.166 -0.378 + j0.166 107.703 / -21.801 21.552 + j8.621	0.181 + j0.058

Example 5

Match a 100 Ω load to a 50 Ω transmission Line at a given frequency.

$$\lambda_g = \frac{2\pi}{\beta} = \frac{2\pi}{k} = \frac{2\pi}{k_0 \sqrt{\varepsilon_r}} = \frac{\lambda_0}{\sqrt{\varepsilon_r}}$$

$$\lambda_0 = \frac{c}{f}$$

$$Z_{0T} = \sqrt{100 \times 50}$$
$$= 70.7$$

$$Z_{0T} = 70.7 \Omega$$

Shunt Loads

A. Parallel Loads

Solution Procedure:

- 1) Apply impedance match at x=0
- 2) Determine Z_{in1}
- 3) combine Z_{in1} with Z_s (How do we do this?)
- 4) Determine Z_{in2}

Solution:

$$Z_{\mathit{in1}} = Z_{\mathit{o}} \frac{Z_{\mathit{L}} + \mathit{j} Z_{\mathit{o}} \tan \left(\beta \ell_{1}\right)}{Z_{\mathit{o}} + \mathit{j} Z_{\mathit{L}} \tan \left(\beta \ell_{1}\right)}, \quad Z_{\parallel} = \frac{Z_{\mathit{s}} Z_{\mathit{in1}}}{Z_{\mathit{s}} + Z_{\mathit{in1}}}, \quad Z_{\mathit{in2}} = Z_{\mathit{o}} \frac{Z_{\parallel} + \mathit{j} Z_{\mathit{o}} \tan \left(\beta \ell_{2}\right)}{Z_{\mathit{o}} + \mathit{j} Z_{\parallel} \tan \left(\beta \ell_{2}\right)}$$

Example 6

freq	Zin1	S(1,1)
1.000 GHz	10.437 - j10.794	0.668 / -154.614

Solution

$$z_{0} = 50$$
 $z_{0} = 50$
 $z_{$

$$Z_1 = 50 \frac{(95+j50) + j50 + j60 + y6}{50 + j(95+j50) + j60 + y6}$$

$$Z_1 = 52.6 - j50 \longrightarrow Y_1 = 0.01 + j0.0094$$
 $Jwc = j2\pi \times 10^9 \times 2.2 \times 10^{-12} = j0.0138$
 $Y_2 = Y_1 + Jwc = 0.01 + j0.023 = D Z_2 = 15.9 - j36.6$

$$Z_{in} = 50 \frac{(15.9 - j36.6) + j50 + an 25}{50 + j(15.9 - j36.6) + an 25} = 10.6 - j11$$
 [when to Approx.]

$$\Gamma_{in} = \frac{2in - 50}{3in + 50} = -0.596 - j0.29 = 0.66 / -154$$

Parallel Lines:

Solution Procedure:

- 1) Determine Z_{in} of lines 1 and 2
- 2) Determine effective load (how do they combine?)
- 3) Determine Z_{in}

Solution:

$$\begin{split} Z_{_{in1}} &= Z_{_{o1}} \frac{Z_{_{L1}} + jZ_{_{o1}} \tan \left(\beta_{_{1}}\ell_{_{1}}\right)}{Z_{_{o1}} + jZ_{_{L1}} \tan \left(\beta_{_{1}}\ell_{_{1}}\right)}, \ Z_{_{in2}} = Z_{_{o2}} \frac{Z_{_{L2}} + jZ_{_{o2}} \tan \left(\beta_{_{2}}\ell_{_{2}}\right)}{Z_{_{o2}} + jZ_{_{L2}} \tan \left(\beta_{_{2}}\ell_{_{2}}\right)} \\ Z_{_{\parallel}} &= \frac{Z_{_{in1}}Z_{_{in2}}}{Z_{_{in1}} + Z_{_{in2}}}, \quad Z_{_{in}} = Z_{_{o}} \frac{Z_{_{\parallel}} + jZ_{_{o}} \tan \left(\beta\ell\right)}{Z_{_{o}} + jZ_{_{\parallel}} \tan \left(\beta\ell\right)} \end{split}$$

Example 6 with parallel o.c. TL instead of shunt C

$$f_0 = \frac{50}{50} + j(95+j50) + fan45$$

$$Z_1 = 52.6 - j50 \longrightarrow Y_1 = 0.01 + j0.0094$$

$$\frac{7}{50} = \frac{1}{50} + \frac{1}{50} = \frac{1}{50} \cdot 0.0138 \qquad \frac{1}{10003} + \frac{1}{10003} = 0.01 + \frac{1$$

$$\Gamma_{in} = \frac{2.n - 50}{3n + 50} = -0.596 - j0.29 = 0.66 / -154$$