

ECE 344

MICROWAVE FUNDAMENTALS PART1-Lecture 5

Dr. Gehan Sami

Example 1 USE ADS to:
-draw magnitude voltage across the line $\beta \mathrm{l}=2 \pi$ or $\ell=\lambda$
-draw magnitude current across the line
-draw impedance across the line observe $\operatorname{mag}(\mathrm{V}), \operatorname{mag}(\mathrm{I}), \mathrm{Z}$ every $\ell=\lambda / 2$
-Compute magnitude of voltage , current at load. -verify input impedance at load from voltage/current Equals load impedance. -find max voltage value and its position -find min voltage value and its position

Vac $=$ polar $(10,0) \mathrm{V}$ $\mathrm{f}=1 \mathrm{GHz}$

Terminated transmission line repeats its voltage mag.,current mag. and impedance each $\lambda / 2$

(a z=0
$v_{0}^{+}=5 v_{01 t} \quad z_{g}=z_{0}$
$u_{i}=u_{0}^{+}\left(1+\Gamma_{L}\right), \Gamma_{L}=\frac{z_{l}-z_{0}}{z_{L}+z_{0}}$
$v_{1}=5(1+0.678 \angle 85.43)$
$v_{1}=6.26 \quad 32.67$
$I_{1}=\frac{v_{0}^{+}}{Z_{0}}\left(1-\Gamma_{L}\right)=0.116 L-35.53$
$z_{1}=v_{1} / z_{1}=53.9<68.2$
$=Z_{L}$
$z_{L}=20+j 50=53.85 \angle 68.2$

$$
\left.\begin{array}{l}
V(l+\lambda / 2)=-V(l) \\
I(\rho+\lambda / 2)=-I(l)
\end{array}\right\} \quad \underset{\text { in }}{ }\left(l+\frac{\lambda}{2}\right)=Z_{\text {in }}(l)
$$

$$
v(l+\lambda)=v(l), T(l+\lambda)=I(l)
$$

for $\beta l=60^{\circ} \quad U_{0}^{+}=5 \quad \Gamma=0.678<85.43$ Find $V(\beta l=60), \quad I(\beta l=60), \quad Z(\beta l=60)$
foin

$$
\begin{aligned}
V & =U_{0}^{+} e^{j \beta l}\left(1+\Gamma e^{-2 j \beta l}\right) \\
& =5 \angle 60(1+0.678 \angle 85.43 \angle-120) \\
& =5.56+j 5 \cdot 79=8 \angle 46.13^{\circ} \\
I & =\frac{U_{0}+}{z_{0}} e^{j \beta l}\left(1-\Gamma e^{-2 j \beta l}\right) \\
& =\frac{5}{50} \angle 60 \\
& =-0.011+j 0.057=0.0586 \angle 101 \\
Z & \left.=\frac{V}{I}=\frac{8 L 46.13}{0.05!l}=78.48-j 11.7=136.6 \angle-54.9\right)
\end{aligned}
$$

$$
\begin{aligned}
& V_{0}^{+}=5 \text { Volt } \quad \Gamma_{L}=6.678185 .43 \\
& |V|=\left|V_{0}^{+}\right|\left|1+\left|\Gamma_{L}\right| e^{j \phi} e^{-2 j \beta l}\right| \\
& \left|v_{\text {max }}\right|=\left|V_{0}^{+}\right|\left(1+\left|r_{L}\right|\right)=5 \times 1.678=8.4 V_{0} \mid+ \\
& \left|V_{\min }\right|=\left|V_{0}^{+}\right|\left(1-\left|r_{L}\right|\right)=5 \times 0.322=1.6 V_{01 t} \\
& \operatorname{Max} @ q-2 \beta l=0 \rightarrow \beta l=\frac{85.43}{2}=42.7^{\circ} \\
& \mu_{\text {in }} @ \phi-2 \beta l=\pi \rightarrow \beta l=\frac{85 \cdot 43-180}{2} \\
& \text { at } l=\pi / 2 \beta \rho=180 \quad=-47.28+180
\end{aligned}
$$

$$
\begin{aligned}
& \text { as }\left|v\left(z+y_{2}\right)\right|=|V(z)| \text { or }\left|1+\left|r_{L}\right| e^{2} e^{-j \rho^{l}} e^{-2 j \mu 1 r_{0}}\right|=\left|1+\left|r_{L}\right| e^{j \phi} e^{-2 j \beta l}\right|
\end{aligned}
$$

Example 2

A 2 cm lossless TL has $\mathrm{V}_{\mathrm{g}}=10$ volt, $\mathrm{Z}_{\mathrm{g}}=60 \Omega, \mathrm{Z}_{\mathrm{L}}=100+\mathrm{j} 80 \Omega$ and $\mathrm{Z}_{\mathrm{o}}=40 \Omega, \lambda=10 \mathrm{~cm}$ Find the input impedance $Z_{\text {in }}$ and $V_{\text {in }}$

$$
\begin{aligned}
& \mathrm{Z}_{\text {in }}=\mathrm{Z}_{0} \frac{Z_{L}+j Z_{0} \tan \beta l}{Z_{0}+j Z_{L} \tan \beta l} \rightarrow \mathrm{Z}_{\mathrm{in}}=12.2-j 21.175 \\
& \mathrm{~V}_{\text {in }}=\mathrm{V}_{\mathrm{g}} \frac{\mathrm{Z}_{\mathrm{in}}}{\mathrm{Z}_{\mathrm{in}}+\mathrm{Z}_{\mathrm{g}}} \rightarrow \mathrm{~V}_{\mathrm{in}}=2.35-j 2.24
\end{aligned}
$$

Example 2 with ADS

freq	Zin1	Vin
3.000 GHz	$12.208-\mathrm{j} 21.177$	$2.349-\mathrm{j} 2.244$

Matched Load

(A) Matched load: $\left(Z_{L}=Z_{0}\right)$

$$
\begin{array}{cc}
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=0 & \text { No reflection fro। } \\
\Rightarrow V(-\ell)=V_{0}^{+} e^{+j \beta \ell} & \Rightarrow Z(-\ell)=Z_{0} \\
I(-\ell)=\frac{V_{0}^{+}}{Z_{0}} e^{+j \beta \ell} & \text { For any } \ell
\end{array}
$$

Short-Circuit Load

(B) Short circuit load: $\left(Z_{L}=0\right)$

$$
\begin{aligned}
& \Gamma_{L}=\frac{0-Z_{0}}{0+Z_{0}}=-1 \\
& \Rightarrow Z(-\ell)=j Z_{0} \tan (\beta \ell)
\end{aligned}
$$

Note: $\beta \ell=2 \pi \frac{\ell}{\lambda_{g}}$

$$
\text { Always imaginary! } \quad \Rightarrow Z(-\ell)=j X_{s c}
$$

S.C. can become an O.C. with a $\lambda_{g} / 4$ trans. line

Open-Circuit Load $\left(Z_{L}=\infty\right)$

(C) Open circuit load: $(\mathrm{ZL}=\infty)$

$$
\begin{aligned}
& \begin{array}{l}
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \\
\Gamma_{L}=\frac{\infty-Z_{0}}{\infty+Z_{0}} \\
\Gamma_{L}=+1
\end{array} \\
& Z(-d)=Z_{0}\left(\frac{Z_{L}+j Z_{0} \tan (\beta d)}{Z_{0}+j Z_{L} \tan (\beta d)}\right) \quad \text { or } Z(-d)=Z_{0}\left(\frac{1+j\left(Z_{0} / Z_{L}\right) \tan (\beta d)}{\left(Z_{0} l / Z_{L}\right)+j \tan (\beta d)}\right) \\
& Z(-d)=-j Z_{0} \cot (\beta d) \quad \text { Always imaginary! }
\end{aligned}
$$

Open-Circuit Load $\left(Z_{L}=\infty\right)$

$$
\begin{gathered}
Z(-d)=-j Z_{0} \cot (\beta d) \\
Z(-d)=j X_{o c} \\
X_{o c}=-Z_{0} \cot (\beta d)
\end{gathered}
$$

\section*{| ค凩弐 | S-PARAMETERS |
| :--- | :--- |}

- S Param

Start $=1.0 \mathrm{GHz}$
Stop $=1.0 \mathrm{GHz}$
Step $=1.0 \mathrm{MHz}$

	freq Zin1 Zin2 1.000 GHz $50.002 / .90 .000$ $50.000 / .90 .000$
	openTLequivC

Zin
Zin1
Zin1=zin(S.11,PortZ1)

Zin
Zin2
Zin2=zin(S22,PortZ2)
shortTLequivL

freq	Zin1	Zin2
1.000 GHz	$50.014 / 90.000$	$50.000 / 90.000$

Input impedance for a T.L. of length $\ell \equiv \lambda / 2$

$$
\begin{aligned}
& \mathrm{Z}_{\text {in }}=\mathrm{Z}_{0} \frac{Z_{L}+j Z_{0} \tan \beta l}{Z_{0}+j Z_{L} \tan \beta l} \\
& \text { at } l=\lambda / 2 \Rightarrow \tan \beta l=0 \rightarrow \mathrm{Z}_{\text {in }}=Z_{L}
\end{aligned}
$$

So any line(no matter its characteristic impedance) of length $\lambda / 2$ or multiple of $\lambda / 2$, will look to (or have $Z_{i n}$) Z_{L} directly; (as if T.L. does not exist, i.e. T.L. does not transform Z_{L} at its input)

Input impedance for a T.L. of length $\ell \equiv \lambda / 4$ (quarter wave tiransformer)

$$
\mathrm{Z}_{\mathrm{in}}=\mathrm{Z}_{1} \frac{Z_{L} \cos \beta l+j Z_{1} \sin \beta l}{Z_{1} \cos \beta l+j Z_{L} \sin \beta l}
$$

match pure resistive load impedance
at $l=\lambda / 4, \beta l=\pi / 2 \rightarrow \mathrm{Z}_{\text {in }}=\frac{Z_{1}^{2}}{Z_{L}}=\mathrm{Z}_{0}$
$Z_{1}=\sqrt{Z_{L} Z_{0}}$ so input impedance at input of transformer look as Z_{0}

Example 4

Given a 50Ω transmission line that is 0.25λ long excited by a l V voltage source at 300 MHz frequency with an internal impedance of 100Ω, and the line is terminated by a load $Z_{L}=100-j 40 \Omega$, determine $\Gamma_{L}, Z_{\text {in }}, V_{i n}, V_{o}^{+}$

$$
\begin{aligned}
\Gamma_{L} & =\frac{Z_{L}-Z_{o}}{Z_{L}+Z_{o}}=0.378-j 0.166 \\
Z_{\text {in }} & =Z_{o} * Z_{o} / Z_{L}=21.55+\mathrm{j} 8.62 \\
V_{\text {in }} & =V_{T H} \frac{Z_{\text {in }}}{Z_{\text {in }}+Z_{T H}}=0.1814+\mathrm{j} 0.058 \\
V_{o}^{+} & =\frac{V_{\text {in }}}{e^{j \beta l}\left(1+\Gamma_{L} e^{-2 j \beta l}\right)}=0.0144-j 0.295
\end{aligned}
$$

Verify by ADS

freq	$\mathrm{S}(1,1)$	$\mathrm{S}(2,2)$	Zin1	Zin2	vin
300.0 MHz	$0.378-\mathrm{j} 0.166$	$-0.378+\mathrm{j} 0.166$	$107.703 /-21.801$	$21.552+\mathrm{j} 8.621$	$0.181+\mathrm{j} 0.058$

Example 5

Match a 100Ω load to a 50Ω transmission Line at a given frequency.

$$
\lambda_{g}=\frac{2 \pi}{\beta}=\frac{2 \pi}{k}=\frac{2 \pi}{k_{0} \sqrt{\varepsilon_{r}}}=\frac{\lambda_{0}}{\sqrt{\varepsilon_{r}}}
$$

Shunt Loads

A. Parallel Loads

Determine $Z_{\text {in } 2}=Z_{2}\left(-\ell_{1}-\ell_{2}\right)$:
Solution Procedure:

1) Apply impedance match at $x=0$
2) Determine $Z_{i n 1}$
3) combine $Z_{i n 1}$ with Z_{s} (How do we do this?)
4) Determine $Z_{i n 2}$

Solution:
$Z_{i n 1}=Z_{o} \frac{Z_{L}+j Z_{o} \tan \left(\beta \ell_{1}\right)}{Z_{o}+j Z_{L} \tan \left(\beta \ell_{1}\right)}, Z_{\|}=\frac{Z_{s} Z_{i n 1}}{Z_{s}+Z_{i n 1}}, \quad Z_{i n 2}=Z_{o} \frac{Z_{\|}+j Z_{o} \tan \left(\beta \ell_{2}\right)}{Z_{o}+j Z_{\|} \tan \left(\beta \ell_{2}\right)}$

Example 6

freq	Zin1	$\mathrm{S}(1,1)$
1.000 GHz	$10.437-\mathrm{j} 10.794$	$0.668 /-154.614$

Solution

$$
\begin{aligned}
Z_{1}=52.6-j 50 \rightarrow Y_{1} & =0.01+j 0.0094 \\
J_{w c} & =j 2 \pi \times 10^{9} \times 2.2 \times 10^{-12}=j 0.0138 \\
Y_{2} & =Y_{1}+J w c=0.01+j 0.023 \Rightarrow Z_{2}=15.9-j 36.6
\end{aligned}
$$

$$
\begin{aligned}
& Z_{\text {in }}=50 \frac{(15.9-j 36.6)+j 50 \tan 25}{50+j(15.9-j 36.6) \tan 25}=10-6-j 11 \quad\left[\begin{array}{c}
\text { Not Exact } \\
\text { [dne toAppror. } \\
\text { accoss solation }
\end{array}\right] \\
& \Gamma_{\text {in }}=\frac{z_{\text {in }}-50}{z_{\text {in }}+50}=-0.596-j 0.29=0.66 \angle-10.8
\end{aligned}
$$

Parallel Lines:

Solution Procedure:

1) Determine $Z_{\text {in }}$ of lines 1 and 2
2) Determine effective load (how do they combine?)
3) Determine $Z_{\text {in }}$

Solution:

$$
\begin{aligned}
& Z_{i n 1}=Z_{o 1} \frac{Z_{L 1}+j Z_{o 1} \tan \left(\beta_{1} \ell_{1}\right)}{Z_{o 1}+j Z_{L 1} \tan \left(\beta_{1} \ell_{1}\right)}, Z_{i n 2}=Z_{o 2} \frac{Z_{L 2}+j Z_{o 2} \tan \left(\beta_{2} \ell_{2}\right)}{Z_{o 2}+j Z_{L 2} \tan \left(\beta_{2} \ell_{2}\right)} \\
& Z_{\|}=\frac{Z_{i n 1} Z_{i n 2}}{Z_{i n 1}+Z_{i n 2}}, \quad Z_{i n}=Z_{o} \frac{Z_{\|}+j Z_{o} \tan (\beta \ell)}{Z_{o}+j Z_{\|} \tan (\beta \ell)}
\end{aligned}
$$

Example 6 with parallel o.c. TL instead of shunt C

freq	Zin1	$\mathrm{S}(1,1)$	Zin2	$\mathrm{S}(2,2)$
1.000 GHz	$10.437-\mathrm{j} 10.794$	$0.668 /-154.614$	$10.437-\mathrm{j} 10.794$	$0.668 /-154.614$

* Replace shunt capacitor $\frac{1}{T} 2.2 \mathrm{pF}$ withequiv. o.c. T.L.
$+J \frac{\tan \beta^{l}}{z_{0}}=J \omega G_{1} \rightarrow \tan \beta P=j \omega\left(z_{0}\right.$

$$
\beta \rho=\tan _{n}^{-1}\left(2 \pi \times 10^{9} \times 2.2 \times 10^{-12} \times 50\right)
$$

Solution $=34.65^{\circ}$

$$
Z_{1}=52.6-j 50 \rightarrow Y_{1}=0.01+j 0.0094
$$

$Z_{0.6}=-j z_{0} \cot \rho l \quad Y_{2}=j \frac{\tan 34.65}{50}=j 0.0138 \quad Y_{1}+Y_{2}=0.01+j 0.0094+j 0.0138=0.01+j 0.023$

$$
\begin{aligned}
& z_{\text {in }}=50 \frac{(15.9-j 36.6)+j 50 \tan 25}{50+j(15.9-j 36.6) \tan 25}=10-6-j 11 \\
&=10.4-j 10.8 \\
& \Gamma_{\text {in }}=\frac{z_{\text {in }}-50}{z_{\text {in }}+50}=-0.596-j 0.29=0.66 \angle-154
\end{aligned}
$$

[Not Exactaccoss soluation

